textbook_h_sansu

1 2019/09/19(木) 23:18:05.28 ID:ycBXGtZs9

東大入試「伝説の良問」が教える数学センスと思考法とは?


「数学のセンス」とはいったい何でしょうか。「計算が速い」だけでは、どうも違う気がします。「公式をよく知っている」というのもちょっと違うかな。でも、「公式を自由に使うことができる」となるとセンスかなあ、と感じるかもしれません。

そこで、東京大学の入試問題を見てみましょう。どのようなセンスや基礎学力が要求されているかを念頭に置きながら、問題を楽しんでください。数学を楽しむことができる。これも重要な数学のセンスでしょうね。

円周率πは古代ギリシャから今日に至るまで、さまざまな話題を提供してくれる数です。

3.14159……と延々と(周期性がなく)続く超越数であるという難しさと、円周の長さとその円の直径の比という小学生でも分かる身近さの、二つの顔を持つ点が人気の秘密なのでしょう。

このようなすてきな数は、他には見当たりません。このすてきな数を東大は入試問題にしました。でも、円周率が3.14ではなく、3.05より大? なぜでしょうか。

約2200年前、ギリシャのアルキメデスは、円に内接する正96角形と円に外接する正96角形の周の長さを計算して比較し、πは71分の233と7分の22の間にあることを見つけました。πの値が直接求められないならば、πに近づく方法を考えればよいという現代の解析学に近いような考え方をすでにしていたのです。

日本でも、江戸時代の数学者、建部賢弘(たけべ・かたひろ)が正方形から始め、加速法という手法を駆使して正1024角形までを計算し、小数点以下41桁まで求めたといいます。

この東西二つの計算法は、円周率を円周の長さと直径の関係で捉え、正多角形を用いるという、基本的には同じ考え方ですね。

話はちょっと脱線しますが、ここに東西の文化の違いが隠れています。アルキメデスの正96角形の96は6の16倍ですから、まず正六角形からスタートし、正12角形、正24角形……と次々に辺の数を2倍にして計算したのです。

一方、1024は2の10乗ですから、建部は正方形からスタートし、正八角形、正16角形、……正512角形、正1024角形と2倍にして計算していったようです。

西洋のアルキメデスは合理的で、1辺の長さが半径に等しい正六角形から始めたのですが、建部のスタートは正方形。日本は木の文化で、門などの造形の基調は四角形であり、西洋のようなアーチは少ないので、正方形から始める方が自然だったのかもしれませんね。

さて、東大入試はまさしくこれらの方法でπを求めなさいという趣旨でしょう。まず正六角形ならば、周の長さは半径の6倍。円周率は「3より大」と求められますが、東大の要求は「3.05より大」を示すことですから、惜しい!

ならば、正六角形の次に正八角形を調べようという人と、正12角形を調べようという人がいるでしょう。いずれの方法も3.05より大きいと示すことができます。3.14に比べて、かなり大まかな近似値ですから、OKとなるわけですね。これが、東大が3.05に込めた秘密なのです。

この計算は小学生でもできます。半径が1の円に内接する正六角形と正12角形を描き、考察してみましょう。

図で、三角形OATは正三角形の半分の直角三角形。

OA=1、AT=0.5だから、三平方の定理(ピタゴラスの定理)により、OTの長さが分かります。OK=1から、KTの長さが計算でき、さらに、直角三角形KTAに三平方の定理を用いてAK、つまり正12角形の1辺の長さを得ることができます。概算は次の図のようになります。

正12角形の周の長さは、0.518×12=6.216。円周の長さ2πはこれよりも大きいので、πは3.108よりも大きい。これで東大はほぼ合格ですね。

このように、東大はπの近似値を求める計算方法を自ら見いだして計算できるかを問うているのですね。単に計算するだけでなく、その方法も見いだす。これが本当の意味での計算力です。計算のセンスを垣間見ることができる良問でしょう。





https://diamond.jp/articles/-/213733




2 2019/09/19(木) 23:19:39.04 ID:3boEfxOm0
3.14 >> 3.05


31 2019/09/19(木) 23:48:17.71 ID:M3TuTBUM0
>>2
正解


39 2019/09/19(木) 23:50:35.79 ID:Znb5kxN80
>>2
これで終わっとるやん


47 2019/09/19(木) 23:54:23.20 ID:bG4UTsPD0
>>2

 ある意味、王道だな。


49 2019/09/19(木) 23:58:23.28 ID:9ZIW3tm90
>>2
証明問題で考えたらその3.14はどこから来た数字や?って事で不正解


51 2019/09/20(金) 00:01:31.24 ID:YbJupbKV0
それができないなら>>2の解答と大して変わらん


86 2019/09/20(金) 00:29:34.72 ID:WCyL3gZW0
想像力を鍛えるのは数学でも良いが、結果ありきで問題出して、
出題のセンスを褒めるってなに。
>>2で終わってるし


7 2019/09/19(木) 23:27:04.44 ID:w4E/PHo90
ゆとり「学校で円周率は3って習ったから、3.05より小さいよ」


9 2019/09/19(木) 23:29:31.26 ID:MOJhkq9h0
大多数の人が3.14って言うから状況証拠的には3.05より大きい
あとは裁判員の心象次第だな


14 2019/09/19(木) 23:35:34.65 ID:7DMpjbX+0
円周率ゎ3でしょ(*´ω`*)




15 2019/09/19(木) 23:35:44.49 ID:xwd5u7XH0
3.05より3.14の方が大きいから。以上。


16 2019/09/19(木) 23:37:28.81 ID:P311F0Rx0
しかし、そもそも、四角形より六角形、六角形より八角形が、円に近い。

ということを数学的に数字で証明するのは、実は難しい・・・


21 2019/09/19(木) 23:39:24.92 ID:n7sCXTog0
円周の長さが内接多角形の周の長さより長いことを証明できなければ0点だね

残念w


46 2019/09/19(木) 23:53:18.74 ID:VgwNhdhk0
>>21
証明しろってことは、ワープ理論とかが出てくるわけかw


50 2019/09/19(木) 23:59:46.64 ID:v/Q9zqvS0
>>21
上限の値については円に外接する多角形でフォローするでしょ
内接/外接する多角形の外周で値が変わらなくなった桁が確定した値


22 2019/09/19(木) 23:39:32.63 ID:nQ0dBQ0y0
円周率は3だって学校の先生が言ってたよ‥‥


23 2019/09/19(木) 23:39:54.88 ID:e5fsoPK90
こまけぇことはいーんだよ!


24 2019/09/19(木) 23:40:19.81 ID:bh4lm0GH0
そもそも円周率って何なんだよ
率って


25 2019/09/19(木) 23:40:32.88 ID:jgKw0EuU0
π=4
ニコニコ動画でみた


28 2019/09/19(木) 23:43:43.75 ID:2x0osjVK0
時間があるときなら解けると思うが、本番でこれ出されたら面食らうだろうな。正n角形を使うのはわかるから部分点ねらいだな。


33 2019/09/19(木) 23:49:03.25 ID:dHV/OinF0
円周率、200桁まで言えるけど
あんまりウケなかったから、自慢するのを止めたわ


9999 1234/05/06(月) 00:00:00.00 ID:ExAwArosU



難しいわ

     ∧_∧
   ( ´ω`) 
  (    )
   | | |
   (__)_)




引用元: http://asahi.5ch.net/test/read.cgi/newsplus/1568902685/